Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 945
Filtrar
1.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513351

RESUMO

Secure and efficient treatment of diverse pain and inflammatory disorders is continually challenging. Although NSAIDs and other painkillers are well-known and commonly available, they are sometimes insufficient and can cause dangerous adverse effects. As yet reported, derivatives of pyrrolo[3,4-d]pyridazinone are potent COX-2 inhibitors with a COX-2/COX-1 selectivity index better than meloxicam. Considering that N-acylhydrazone (NAH) moiety is a privileged structure occurring in many promising drug candidates, we decided to introduce this pharmacophore into new series of pyrrolo[3,4-d]pyridazinone derivatives. The current paper presents the synthesis and in vitro, spectroscopic, and in silico studies evaluating the biological and physicochemical properties of NAH derivatives of pyrrolo[3,4-d]pyridazinone. Novel compounds 5a-c-7a-c were received with high purity and good yields and did not show cytotoxicity in the MTT assay. Their COX-1, COX-2, and 15-LOX inhibitory activities were estimated using enzymatic tests and molecular docking studies. The title N-acylhydrazones appeared to be promising dual COX/LOX inhibitors. Moreover, spectroscopic and computational methods revealed that new compounds form stable complexes with the most abundant plasma proteins-AAG and HSA, but do not destabilize their secondary structure. Additionally, predicted pharmacokinetic and drug-likeness properties of investigated molecules suggest their potentially good membrane permeability and satisfactory bioavailability.


Assuntos
Inibidores de Ciclo-Oxigenase , Hidrazonas , Inibidores de Lipoxigenase , Piridazinas , Pirróis , Hidrazonas/síntese química , Hidrazonas/química , Hidrazonas/farmacocinética , Hidrazonas/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacocinética , Inibidores de Ciclo-Oxigenase/farmacologia , Piridazinas/síntese química , Piridazinas/química , Piridazinas/farmacocinética , Piridazinas/farmacologia , Pirróis/síntese química , Pirróis/química , Pirróis/farmacocinética , Pirróis/farmacologia , Humanos , Fibroblastos , Simulação por Computador , Permeabilidade da Membrana Celular , Linhagem Celular
2.
ChemMedChem ; 18(14): e202300206, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37160667

RESUMO

The presence of inflammatory mediators in the tumor microenvironment, such as cytokines, growth factors or eicosanoids, indicate cancer-related inflammatory processes. Targeting these inflammatory mediators and related signal pathways may offer a rational strategy for the treatment of cancer. This study focuses on the incorporation of metabolically stable, sterically demanding, and hydrophobic dicarba-closo-dodecaboranes (carboranes) into dual cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids. The di-tert-butylphenol derivative tebufelone represents a selective dual COX-2/5-LO inhibitor. The incorporation of meta- or para-carborane into the tebufelone scaffold resulted in eight carborane-based tebufelone analogs that show no COX inhibition but 5-LO inhibitory activity in vitro. Cell viability studies on HT29 colon adenocarcinoma cells revealed that the observed antiproliferative effect of the para-carborane analogs of tebufelone is enhanced by structural modifications that include chain elongation in combination with introduction of a methylene spacer resulting in higher anticancer activity compared to tebufelone. Hence, this strategy proved to be a promising approach to design potent 5-LO inhibitors with potential application as cytostatic agents.


Assuntos
Adenocarcinoma , Boranos , Neoplasias do Colo , Humanos , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/química , Microambiente Tumoral
3.
Arch Pharm (Weinheim) ; 356(2): e2200395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336646

RESUMO

Searching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1). Among them, six derivatives 4c, 5b, 6a, 7a, 7b, and 10b displayed the highest binding energy. These derivatives were evaluated for their in vitro COX-1 and COX-2 inhibitory activities and their selectivity indexes were calculated. Additionally, these derivatives displayed IC50 values ranging between 4.909 ± 0.25 and 57.53 ± 2.91 µM, and 3.289 ± 0.14 and 124 ± 5.32 µM, against COX-1 and COX-2, respectively. Furthermore, the tested derivatives were found to have selective inhibitory activity on the COX-2 enzyme. Surprisingly, the two pyrazole derivatives 4c and 5b were found to be the most active, with IC50 values of 9.835 ± 0.50 and 4.909 ± 0.25 µM and 4.597 ± 0.20 and 3.289 ± 0.14 µM compared with meloxicam (1.879 ± 0.1 and 5.409 ± 0.23 µM) and celecoxib (5.439 ± 0.28 and 2.164 ± 0.09 µM) against COX-1/-2, respectively. Besides, two pyrazole derivatives, 4c and 5b, displayed a COX-1/COX-2 SI of 2.14 and 1.49. Computational techniques such as molecular docking, density function theory (DFT) calculation, and chemical absorption, distribution, metabolism, excretion, and toxicity evaluation were applied to explain the molecules' binding mode, chemical nature, drug likeness, and toxicity prediction.


Assuntos
Inibidores de Ciclo-Oxigenase , Pirazóis , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Ciclo-Oxigenase 1/metabolismo , Pirazóis/farmacologia , Pirazóis/química , Pirimidinas , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos
4.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500230

RESUMO

A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.


Assuntos
Inibidores de Ciclo-Oxigenase , Inibidores de Lipoxigenase , Inibidores de Lipoxigenase/farmacologia , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química
5.
Org Biomol Chem ; 20(42): 8293-8304, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36227250

RESUMO

α,α-Difluoromethyl ketones (DFMKs) have emerged as currently investigated agents benefiting from the merging of chemico-physical features conferred by the constitutive elements (-CHF2 and carbonyl moietites). With a view to biological applications, the additional incorporation of heterocycles is a desirable property enabling the tuning of critical factors encompassing the pharmaco-dynamic and kinetic profiles. The underexplored assembling of α,α-difluoromethyl-heteroaromatic ketones is herein implemented via a conceptually intuitive Weinreb amide acylative transfer of a putative difluoromethyl-carbanion. To make the strategy productive, we adopted the commercially available TMSCHF2 pronucleophile - characterized by robust chemical stability and manipulability (bp 65 °C) - which upon Lewis-base mediated activation delivers the competent CHF2-nucleophile. The synthetic protocol was carried out on pyrazole- and isoxazole-based scaffolds, and a panel of heteroaryl-DFMKs was consequently developed as potential COX-inhibitors. In this sense, the bioisosterism deducted through docking studies between the widely expressed carboxylic group (in several clinically used COX inhibitors) and the -COCHF2 motif introduced herein supports this rationale. To confirm the docking results, all compounds were tested against both COX-1 and COX-2 enzyme isoforms showing activity in the micromolar range and a good selectivity index (SI). They were also evaluated for their biocompatibility using NIH/3T3 cells to which they did not show any significant toxicity.


Assuntos
Isoxazóis , Cetonas , Camundongos , Animais , Cetonas/química , Inibidores de Ciclo-Oxigenase/química , Pirazóis/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2 , Relação Estrutura-Atividade
6.
Arch Pharm (Weinheim) ; 355(9): e2200136, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35606682

RESUMO

In an endeavor to identify potent anti-inflammatory agents, new thiosemicarbazones (TSCs) incorporated into a diaryl ether framework (2a-2l) were prepared and screened for their in vitro inhibitory effects on cyclooxygenases (COXs). 4-[4-(Piperidin-1-ylsulfonyl)phenyl]-1-[4-(4-cyanophenoxy)benzylidene]thiosemicarbazide (2c) was the most potent and selective COX-1 inhibitor in this series, with an IC50 value of 1.89 ± 0.04 µM. On the other hand, 4-[4-(piperidin-1-ylsulfonyl)phenyl]-1-[4-(4-nitrophenoxy)benzylidene]thiosemicarbazide (2b) was identified as a nonselective COX inhibitor (COX-1 IC50 = 13.44 ± 0.65 µM, COX-2 IC50 = 12.60 ± 0.78 µM). Based on molecular docking studies, the diaryl ether and the TSC groups serve as crucial moieties for interactions with pivotal amino acid residues in the active sites of COXs. According to MTT test, compounds 2b and 2c showed low cytotoxic activity toward NIH/3T3 cells. Their in vivo anti-inflammatory and antioxidant potencies were also assessed using the lipopolysaccharide-induced sepsis model. Compounds 2b and 2c diminished high-sensitivity C-reactive protein, myeloperoxidase, nitric oxide, and malondialdehyde levels. Both compounds also caused a significant decrease in aspartate aminotransferase levels as well as alanine aminotransferase levels. In silico pharmacokinetic studies suggest that compounds 2b and 2c possess favorable drug-likeness and oral bioavailability. It can be concluded that these compounds may act as orally bioavailable anti-inflammatory and antioxidant agents.


Assuntos
Tiossemicarbazonas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Éteres , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/farmacologia
7.
Bioorg Med Chem ; 57: 116633, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134642

RESUMO

Establishing structure-activity relationships (SAR) for privileged pharmacophores, such as the indole scaffold, is a key step in the early stages of drug discovery. Herein, we report the synthesis and preliminary SAR studies on substituted 6-hydroxyindole-7-carboxylates as a tunable framework for COX inhibition and anti-cancer activity. To facilitate the SAR discovery, a modular synthetic methodology was employed which enabled the synthesis of the substituted indoles. From the synthesized compounds, five displayed COX-1 inhibition activity in a colorimetric assay with their intracellular activity further confirmed by a cell-based target validation assay. Following molecular docking analyses, key interactions between the active compounds and the COX enzymes were elucidated. In addition to the identified COX inhibitors, two compounds showed selective cytotoxicity against Hep-G2, MCF-7, and LnCaP. The mechanism of cell death was investigated and found to include induction of Caspase-3 activation and cleavage, down-regulation of anti-apoptotic proteins Bcl-xL and Bcl-2, and upregulation of Bax. Finally, two representative compounds were confirmed to induce cell cycle arrest at the G1/G0 stage. In summary, the 6-hydroxyindole-7-carboxylate framework shows promising versatility as a template for the discovery of anti-inflammation or anti-cancer agents, given the evidence of its COX inhibitory and anti-cancer activities herein presented.


Assuntos
Antineoplásicos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163154

RESUMO

Our earlier studies showed that coupling nonsteroidal anti-inflammatory drugs (NSAIDs) with oleanolic acid derivatives increased their anti-inflammatory activity in human hepatoma cells. The aim of this study was to evaluate their effect on the signaling pathways involved in inflammation processes in human pancreatic cancer (PC) cells. Cultured PSN-1 cells were exposed for 24 h (30 µM) to OA oxime (OAO) derivatives substituted with benzyl or morpholide groups and their conjugates with indomethacin (IND) or diclofenac (DCL). The activation of NF-κB and Nrf2 was assessed by the evaluation of the translocation of their active forms into the nucleus and their binding to specific DNA sequences via the ELISA assay. The expression of NF-κB and Nrf2 target genes was evaluated by R-T PCR and Western blot analysis. The conjugation of IND or DCL with OAO derivatives increased cytotoxicity and their effect on the tested signaling pathways. The most effective compound was the DCL hybrid with OAO morpholide (4d). This compound significantly reduced the activation and expression of NF-κB and enhanced the activation and expression of Nrf2. Increased expression of Nrf2 target genes led to reduced ROS production. Moreover, MAPKs and the related pathways were also affected. Therefore, conjugate 4d deserves more comprehensive studies as a potential PC therapeutic agent.


Assuntos
Biomarcadores Tumorais/metabolismo , Diclofenaco/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indometacina/farmacologia , Ácido Oleanólico/química , Oximas/química , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Proliferação de Células , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Diclofenaco/química , Humanos , Indometacina/química , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
9.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164411

RESUMO

Flavonoids are compounds with a benzopyranic structure that exhibits multiple pharmacological activities. They are known for their venotonic activity, but their mechanism of action remains unclear. It is thought that, as this mechanism is mediated by prostaglandins, these compounds may interfere with the arachidonic acid (AA) cascade. These assays are designed to measure the antiplatelet aggregation capacity of quercetin, rutin, diosmetin, diosmin, and hidrosmin, as well as to evaluate a potential structure-activity ratio. In this paper, several studies on platelet aggregation at different concentrations (from 0.33 mM to 1.5 mM) of different flavone compounds are conducted, measuring platelet aggregation by impedance aggregometry, and the cyclooxygenase (COX) activity by metabolites generated, including the activity of the pure recombinant enzyme in the presence of these polyphenols. The results obtained showed that quercetin and diosmetin aglycones have a greater antiplatelet effect and inhibit the COX enzyme activity to a greater extent than their heterosides; however, the fact that greater inhibition of the pure recombinant enzyme was achieved by heterosides suggests that these compounds may have difficulty in crossing biological membranes. In any case, in view of the results obtained, it can be concluded that flavonoids could be useful as coadjuvants in the treatment of cardiovascular pathologies.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Flavonoides/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Adulto , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/química , Feminino , Flavonoides/química , Humanos , Masculino , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Adulto Jovem
10.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008977

RESUMO

To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.


Assuntos
Anti-Inflamatórios não Esteroides/química , Imidazóis/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxidiazóis/química , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Técnicas de Química Sintética , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral , Relação Estrutura-Atividade
11.
PLoS One ; 17(1): e0258980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085233

RESUMO

In this study, 5 sterols were isolated and purified from Laminaria japonica, commonly known as edible brown seaweed, and their structures were identified based on detailed chemical methods and spectroscopic analyses. Spectroscopic analyses characterized 5 sterols as 29-Hydroperoxy-stigmasta-5,24(28)-dien-3ß-ol, saringosterol (24-vinyl-cholest-5-ene-3ß,24-diol), 24-methylenecholesterol, fucosterol (stigmasta-5,24-diene-3ß-ol), and 24-Hydroperoxy-24-vinyl-cholesterol. The bioactivities of these sterols were tested using lipid peroxidation (LPO) and cyclooxygenase (COX-1 and -2) enzyme inhibitory assays. Fucosterol exhibited the highest COX-1 and -2 enzyme inhibitory activities at 59 and 47%, respectively. Saringosterol, 24-methylenecholesterol and fucosterol showed higher LPO inhibitory activity at >50% than the other compounds. In addition, the results of molecular docking revealed that the 5 sterols were located in different pocket of COX-1 and -2 and fucosterol with tetracyclic skeletons and olefin methine achieved the highest binding energy (-7.85 and -9.02 kcal/mol) through hydrophobic interactions and hydrogen bond. Our results confirm the presence of 5 sterols in L. japonica and its significant anti-inflammatory and antioxidant activity.


Assuntos
Colesterol/análogos & derivados , Inibidores de Ciclo-Oxigenase/farmacologia , Laminaria/química , Peroxidação de Lipídeos/efeitos dos fármacos , Esteróis/farmacologia , Colesterol/química , Colesterol/farmacologia , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Esteróis/química , Estigmasterol/análogos & derivados , Estigmasterol/química , Estigmasterol/farmacologia
12.
Bioorg Chem ; 119: 105557, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952242

RESUMO

A new set of ibuprofen-quinoline conjugates comprising quinolinyl heterocycle and ibuprofen moieties linked by an alkyl chain were synthesized in good yields utilizing an optimized reaction procedure in a molecular hybridization approach to overcome the drawbacks of the current non-steroidal anti-inflammatory drugs. The synthesized conjugates were screened for their anti-inflammatory, and ulcerogenic properties. Several conjugates were found to have significant anti-inflammatory properties in the carrageenan-induced rat paw edema test without showing any ulcerogenic liability. In addition, most conjugates showed promising peripheral analgesic activity in the acetic acid-induced writhing test as well as central analgesic properties in the in vivo hot plate test. The most promising conjugates were the unsubstituted and 6-substituted fluoro- and chloro-derivatives of 2-(trifluoromethyl)quinoline linked to ibuprofen by a propyl chain. Their anti-inflammatory activity was evaluated against LPS-stimulated inflammatory reactions in RAW264.7 mouse macrophages. In this regard, it was found that most of the conjugates were able to significantly reduce the release and production of nitric oxide in the LPS-stimulated macrophages. The secretion and expression of the pro-inflammatory cytokines IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) were also significantly suppressed.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Desenho de Fármacos , Ibuprofeno/farmacologia , Quinolinas/farmacologia , Ácido Acético , Analgésicos/síntese química , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Ibuprofeno/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Dor/induzido quimicamente , Dor/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade , Quinolinas/química , Células RAW 264.7
13.
Dalton Trans ; 51(3): 857-869, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877948

RESUMO

For the development of anticancer drugs with higher activity and reduced toxicity, two approaches were combined: preparation of platinum(IV) complexes exhibiting higher stability compared to their platinum(II) counterparts and loading them into mesoporous silica SBA-15 with the aim to utilise the passive enhanced permeability and retention (EPR) effect of nanoparticles for accumulation in tumour tissues. Three conjugates based on a cisplatin scaffold bearing the anti-inflammatory drugs naproxen, ibuprofen or flurbiprofen in the axial positions (1, 2 and 3, respectively) were synthesised and loaded into SBA-15 to afford the mesoporous silica nanoparticles (MSNs) SBA-15|1, SBA-15|2 and SBA-15|3. Superior antiproliferative activity of both free and immobilised conjugates in a panel of four breast cancer cell lines (MDA-MB-468, HCC1937, MCF-7 and BT-474) with markedly increased cytotoxicity with respect to cisplatin was demonstrated. All compounds exhibit highest activity against the triple-negative cell line MDA-MB-468, with conjugate 1 being the most potent. However, against MCF-7 and BT-474 cell lines, the most notable improvement was found, with IC50 values up to 240-fold lower than cisplatin. Flow cytometry assays clearly show that all compounds induce apoptotic cell death elevating the levels of both early and late apoptotic cells. Furthermore, autophagy as well as formation of reactive oxygen species (ROS) and nitric oxide (NO) were elevated to a similar or greater extent than with cisplatin.


Assuntos
Cisplatino/farmacologia , Flurbiprofeno/farmacologia , Ibuprofeno/farmacologia , Naproxeno/farmacologia , Dióxido de Silício/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Flurbiprofeno/química , Humanos , Ibuprofeno/química , Estrutura Molecular , Naproxeno/química , Platina/química
14.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830260

RESUMO

Axenic fermentation on solid rice of the saprobic fungus Sparticola junci afforded two new highly oxidized naphthalenoid polyketide derivatives, sparticatechol A (1) and sparticolin H (2) along with sparticolin A (3). The structures of 1 and 2 were elucidated on the basis of their NMR and HR-ESIMS spectroscopic data. Assignment of absolute configurations was performed using electronic circular dichroism (ECD) experiments and Time-Dependent Density Functional Theory (TDDFT) calculations. Compounds 1-3 were evaluated for COX inhibitory, antiproliferative, cytotoxic and antimicrobial activities. Compounds 1 and 2 exhibited strong inhibitory activities against COX-1 and COX-2. Molecular docking analysis of 1 conferred favorable binding against COX-2. Sparticolin H (2) and A (3) showed a moderate antiproliferative effect against myelogenous leukemia K-562 cells and weak cytotoxicity against HeLa and mouse fibroblast cells.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Ascomicetos/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Fibroblastos/efeitos dos fármacos , Policetídeos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Cultura Axênica/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular/métodos , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/isolamento & purificação , Fermentação , Fibroblastos/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular/métodos , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação
15.
J Med Chem ; 64(22): 16380-16421, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34784195

RESUMO

The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Reposicionamento de Medicamentos , Quimioterapia Combinada , Humanos , Inflamação/tratamento farmacológico , Neoplasias/patologia , Neoplasias/prevenção & controle , Relação Estrutura-Atividade
16.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770946

RESUMO

Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk Dicathais orbita (D. orbita) are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl sulfate, tyrindoleninone, 6-bromoisatin, and 6,6'-dibromoindirubin) against inflammatory mediators cyclooxygenases-1/2 (COX-1/2) using molecular docking, followed by molecular dynamics simulation, along with physicochemical, drug-likeness, pharmacokinetic (pk), and toxicokinetic (tk) properties. Molecular docking identified that these indole compounds are anchored, with the main amino acid residues, positioned in the binding pocket of the COX-1/2, required for selective inhibition. Moreover, the molecular dynamics simulation based on root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF) analyses showed that these natural brominated molecules transit rapidly to a progressive constant configuration during binding with COX-1/2 and seem to accomplish a consistent dynamic behavior by maintaining conformational stability and compactness. The results were comparable to the Food and Drug Administration (FDA)-approved selective COX inhibitor, aspirin. Furthermore, the free energy of binding for the compounds assessed by molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) confirmed the binding capacity of indoles towards COX-1/2, with suitable binding energy values except for the polar precursor tyrindoxyl sulfate (with COX-1). The physicochemical and drug-likeness analysis showed zero violations of Lipinski's rule, and the compounds are predicted to have excellent pharmacokinetic profiles. These indoles are projected to be non-mutagenic and free from hepatotoxicity, with no inhibition of human ether-a-go-go gene (hERG) I inhibitors, and the oral acute toxicity LD50 in rats is predicted to be similar or lower than aspirin. Overall, this work has identified a plausible mechanism for selective COX inhibition by natural marine indoles as potential therapeutic candidates for the mitigation of inflammation.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Indóis/farmacologia , Cristalografia por Raios X , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Halogenação , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Modelos Moleculares , Estrutura Molecular
17.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681894

RESUMO

Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Derme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Piridazinas/química , Pirróis/química , Triazóis/química , Anti-Inflamatórios/química , Sobrevivência Celular , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase/química , Derme/citologia , Derme/enzimologia , Desenho de Fármacos , Fibroblastos/citologia , Fibroblastos/enzimologia , Humanos , Técnicas In Vitro , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
18.
J Oleo Sci ; 70(8): 1051-1058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349086

RESUMO

This study aimed to examine the chemical composition of wheat germ oil extracted by three different methods, and to evaluate its inhibitory effect on the cyclooxygenase and proteinase activities. The results showed that the contents of policosanols, tocopherols and phytosterols were affected by the extraction procedure. However, the fatty acid composition of the different oil extracts was nearly the same. Among the tested oils samples, cold pressed oil exhibited the strongest inhibitory activity against proteinase (93.4%, IC50 =195.7 µg/mL) and cyclooxygenase 1 (80.5%, IC50 =58.6 µg/mL). Furthermore, the cold pressed oil had the highest content of octacosanol, ß-sitosterol and α-linolenic acid, suggesting that those bioactive compounds could be essential for the potent ani-cyclooxygenase activity. The present data revealed that wheat germ oil contained cyclooxygenase and trypsin inhibitors, which are the promising therapeutic target for the treatment of various inflammatory diseases. Thus, wheat germ oil might be used to develop functional foods and pharmaceutic products for the human health.


Assuntos
Anti-Inflamatórios/química , Inibidores de Ciclo-Oxigenase/química , Óleos de Plantas/química , Triticum/química , Inibidores da Tripsina/química , Anti-Inflamatórios/análise , Anti-Inflamatórios/isolamento & purificação , Inibidores de Ciclo-Oxigenase/análise , Inibidores de Ciclo-Oxigenase/isolamento & purificação , Álcoois Graxos/análise , Álcoois Graxos/química , Álcoois Graxos/isolamento & purificação , Extração Líquido-Líquido/métodos , Fitosteróis/análise , Fitosteróis/química , Fitosteróis/isolamento & purificação , Óleos de Plantas/análise , Óleos de Plantas/isolamento & purificação , Tocoferóis/análise , Tocoferóis/química , Tocoferóis/isolamento & purificação , Inibidores da Tripsina/análise , Inibidores da Tripsina/isolamento & purificação
19.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360585

RESUMO

New, tricyclic compounds containing a sulfonyl moiety in their structure, as potential safer COX inhibitors, were designed and synthesized. New derivatives have three conjugated rings and a sulfonyl group. A third ring, i.e., an oxazine, oxazepine or oxazocin, has been added to the 1,2-benzothiazine skeleton. Their anti-COX-1/COX-2 and cytotoxic effects in vitro on NHDF cells, together with the ability to interact with model membranes and the influence on reactive oxygen species and nitric oxide, were studied. Additionally, a molecular docking study was performed to understand the binding interaction of the compounds with the active site of cyclooxygenases. For the abovementioned biological evaluation of new tricyclic 1,2-benzothiazine derivatives, the following techniques and procedures were employed: the differential scanning calorimetry, the COX colorimetric inhibitor screening assay, the MTT, DCF-DA and Griess assays. All of the compounds studied demonstrated preferential inhibition of COX-2 compared to COX-1. Moreover, all the examined tricyclic 1,2-thiazine derivatives interacted with the phospholipid model membranes. Finally, they neither have cytotoxic potency, nor demonstrate significant influence on the level of reactive oxygen species or nitric oxide. Overall, the tricyclic 1,2-thiazine derivatives are good starting points for future pharmacological tests as a group of new anti-inflammatory agents.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Derme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiazinas/química , Anti-Inflamatórios não Esteroides/química , Células Cultivadas , Inibidores de Ciclo-Oxigenase/química , Derme/citologia , Fibroblastos/citologia , Humanos , Simulação de Acoplamento Molecular , Prostaglandina-Endoperóxido Sintases/química
20.
J Med Chem ; 64(16): 11816-11836, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34352171

RESUMO

In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.


Assuntos
Anti-Inflamatórios/uso terapêutico , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/uso terapêutico , Descoberta de Drogas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...